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Twentieth-century hydroclimate changes 
consistent with human influence
Kate Marvel1,2,5*, Benjamin I. Cook1,5, Céline J. W. Bonfils3, Paul J. Durack3, Jason E. Smerdon4 & A. Park Williams4

Although anthropogenic climate change is expected to have caused large shifts in temperature and rainfall, the detection 
of human influence on global drought has been complicated by large internal variability and the brevity of observational 
records. Here we address these challenges using reconstructions of the Palmer drought severity index obtained with 
data from tree rings that span the past millennium. We show that three distinct periods are identifiable in climate 
models, observations and reconstructions during the twentieth century. In recent decades (1981 to present), the signal 
of greenhouse gas forcing is present but not yet detectable at high confidence. Observations and reconstructions differ 
significantly from an expected pattern of greenhouse gas forcing around mid-century (1950–1975), coinciding with a 
global increase in aerosol forcing. In the first half of the century (1900–1949), however, a signal of greenhouse-gas-forced 
change is robustly detectable. Multiple observational datasets and reconstructions using data from tree rings confirm 
that human activities were probably affecting the worldwide risk of droughts as early as the beginning of the twentieth 
century.

Tree ring records can be used to reconstruct temperature and hydro-
climatic variables at annual and seasonal resolutions. Over the last sev-
eral decades, large networks of these records have been used to target 
gridded reconstructions of the Palmer drought severity index (PDSI), 
a widely used indicator of soil moisture variability that is typically 
averaged over the summer months (June–July–August or December–
January–February in the Northern and Southern Hemispheres, respec-
tively) during the active growing season. These efforts have yielded 
‘drought atlases’ of North America (North American drought atlas, 
NADA)1,2, Europe and the Mediterranean (Old World drought atlas, 
OWDA)3, Mexico (Mexican drought atlas, MXDA)4, monsoon Asia 
(monsoon Asian drought atlas, MADA)5, and Australia–New Zealand 
(Australia and New Zealand drought atlas, ANZDA)6. Drought atlases 
provide a comprehensive picture of regional soil moisture that dates 
back centuries: high-quality information exists in the MXDA, ANZDA 
and MADA from ad 1400 to present, while the NADA and OWDA 
provide reasonably comprehensive regional coverage dating back to 
ad 1100. These drought atlases have been used to validate general 
circulation models1, understand the climate context of current7,8 and 
historical9 events, and identify past megadroughts2. Here we use the 
collection of drought atlases for a dual purpose: to understand recent 
changes in soil moisture during the twentieth and twenty-first centu-
ries, during which time anthropogenic radiative forcing has steadily 
been increasing, and to estimate naturally forced and internal varia-
bility in the preindustrial era.

PDSI is a standardized index, in which values of zero represent the 
baseline average conditions and positive or negative values indicate wet 
or dry departures from the baseline climatology. Despite its widespread 
and effective use10, valid criticisms have been raised about the use of 
PDSI as an indicator of drought11–14 (see Methods). We therefore test 
the sensitivity of our results to PDSI wherever possible by conducting 
additional comparisons and analyses using estimates of surface and 
root-zone soil moisture from coupled climate model simulations15 
(Supplementary Table 2) and observation-constrained land-surface 
models16,17.

Expected anthropogenic changes
We use a pattern-based detection and attribution method that was ini-
tially developed at Lawrence Livermore National Laboratory (18–21). 
In this model, the expected response to external forcing is calculated 
by averaging forced model simulations to decrease internal variabil-
ity, which is expected to be uncorrelated across separate model runs. 
The ‘fingerprint’ is then defined as the leading empirical orthogonal 
function (EOF) of this multi-model average from 1900 to 2099. In this 
study, we use the ‘historical’ simulations archived by the Coupled Model 
Intercomparison Project Phase 5 (CMIP5, Supplementary Table 3) 
and extended these simulations to 2100 using simulations of the 
Representative Concentration Pathway 8.5 (RCP8.5). These extended 
simulations—which we refer to as H85—contain time-varying changes 
in all natural (volcanic and solar) and anthropogenic (ozone deple-
tion, land-use change, aerosols and greenhouse gases) drivers and are 
dominated by the large increase in greenhouse gas concentrations22 at 
the end of the twenty-first century. Because of this dominance, such 
fingerprints reflect the primary role of greenhouse gases and can be 
thought of as the response of the climate to anthropogenic greenhouse 
gas emissions.

The PDSI fingerprints and associated principal components for 
the individual drought atlas regions are shown in Fig. 1. Consistent 
with previous literature23, the expected fingerprints are characterized 
by drying across most of North America and Europe and moistening 
in the Indian subcontinent and western China. The principal compo-
nents reveal that, in the multi-model average, the individual finger-
prints are increasingly present as the twenty-first century progresses. 
Additionally, the principal components reveal similar twentieth- 
century trends in most regions in the drought atlases: an initial increase, 
followed by a mid-twentieth century decrease in all regions except 
Australia and New Zealand, and a subsequent positive trend towards 
the end of the twentieth century.

To compare observations and model expectations, we calculate a 
‘projection’ time series that measures the spatial covariance between 
the data and the fingerprint as a function of time (see Methods). If 
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the fingerprint is increasingly apparent in the observations or recon-
structions under consideration, this projection will show an upward 
trend with time; conversely, a negative trend indicates that the data 
and fingerprint are increasingly dissimilar. We then project the tree-
ring-based drought atlases and two additional datasets24,25 constructed 
from observations of meteorological variables onto the model-based 
fingerprints over their respective domains (Fig. 1f–j and Methods). In 
the MXDA, and particularly in the NADA and OWDA, the tree ring 
reconstructions show a positive trend at the beginning of the twentieth 
century: they increasingly resemble the fingerprint. In the middle of 
the twentieth century, these trends become negative, before becoming 
positive again in recent decades.

Detection and attribution of externally forced signals is often more 
challenging at regional scales26 and a global perspective may result in 
earlier detection times. However, the most recent Intergovernmental 
Panel on Climate Change (IPCC) report10 indicates only low confi-
dence in attributing changes in drought even over global land areas. 
Previous studies21,27 have suggested that signal detection is more 
robust when the fingerprint captures multiple aspects of the forced 
signal while simultaneously minimizing noise and, by combining data 
from multiple drought atlases into a single Global Drought Atlas (GDA; 
see Methods), we expect to improve the signal-to-noise ratio in two 

ways. First, increasing the land area can increase the signal: simultane-
ous drying in Australia, Mexico and the Mediterranean, for example, is 
a stronger signal than drying in any one of those regions in isolation. 
Second, a global perspective can reduce noise due to internal climate 
variability. The hydroclimate in Mexico and Australia is highly sensitive 
to the El Niño/Southern Oscillation (ENSO), but droughts in these 
regions are associated with opposite phases of the oscillation. Drought 
conditions in the Mediterranean, by contrast, are relatively unaffected 
by ENSO and far more sensitive to the North Atlantic Oscillation28. 
This means that it is harder for natural climate variability alone to pro-
duce, by chance, simultaneous drying across all three regions that were 
identified in the fingerprint.

The model-derived PDSI fingerprint over the GDA region is shown 
in Fig. 2a. For comparison, we also show the fingerprints of soil 
moisture at the surface (around 30 cm depth; Fig. 2b) and root zone 
(about 2 m depth; Fig. 2c). The broad, although imperfect, agreement 
(see Methods) between PDSI and soil moisture suggests that PDSI, 
despite its simplified nature as a drought indicator13,14, is broadly con-
sistent in its behaviour compared to the more process-constrained esti-
mates of soil moisture from the coupled models. Notably, the associated 
principal components (Fig. 2d) all show similar trends over different 
intervals of the twentieth century: positive during the first half of the 
twentieth century) (1900–1949), negative from 1950 to 1975 and pos-
itive thereafter.

Signal, noise and time of emergence
As typical in the detection and attribution literature, we define the sig-
nal S(L) to be the linear trend in the L-length projection time series18. 
This signal is assessed for significance against a ‘noise’ term that  
quantifies natural climate variability19. In most cases, the signal 
is estimated from observational datasets21,29 and climate noise is  
estimated by projecting the output of general circulation models  
(GCMs) that were run under unforced preindustrial20 or past- 
millennium30 conditions onto the fingerprint. The standard deviation 
of all possible L-length trends in this time series N(L) is a standard 
measure of climate noise. For PDSI, the availability of the drought 
atlas reconstructions enables us to measure preindustrial variability 
that is independent of GCMs. The projection of the GDA onto the 
H85 PDSI fingerprint is shown in Fig. 3a. We use pre-1850 values of 
this time series to estimate preindustrial internal and naturally forced 
variability. The amplitude of this noise varies regionally and with trend 
length L (Extended Data Fig. 1).

The model-predicted ‘time of emergence’—the time at which the 
forced signal is expected to emerge from natural climate variability—is 
defined as the year in which the average signal in CMIP5 H85 models, 
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Fig. 1 | Regional fingerprints. a–e, Leading EOFs (fingerprint) of the 
multi-model mean PDSI from historical and RCP8.5 simulations for 
ANZDA (a), MADA (b), MXDA (c), NADA (d) and OWDA (e).  
f–j, The leading principal components (black; PC1) and projections of 
tree-ring-derived drought atlases (green) and meteorological datasets 
(light blue for the global PDSI dataset compiled by A. Dai24,33 and dark 
blue for the dataset provided by the University of East Anglia Climatic 
Research Unit, CRU25) associated with the fingerprints for ANZDA (f), 
MADA (g), MXDA (h), NADA (i) and OWDA (j).
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Fig. 2 | Global fingerprints. a–c, Fingerprints for PDSI (a), column-
integrated soil moisture to 30 cm (b) and column-integrated soil moisture 
to 2 m (c), defined as the leading EOF of the multi-model average of H85 
for each variable over the 1900–2099 period. d, The associated principal 
components for each of the EOFs in a–c. Land areas over which no 
drought atlas data exist are shaded in grey.
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assuming a start in ad 1900, exceeds (and remains above) the recon-
structed preindustrial variability31. Using the terminology used by the 
IPCC32, a signal is ‘likely’ to be detectable when the signal-to-noise 
ratio exceeds 0.95 (66% confidence), ‘very likely’ to be detectable when 
the ratio exceeds 1.64 (that is, significant at 90% confidence), and 
‘virtually certain’ to be detectable when the ratio exceeds 2.57 (99% 
confidence).

The mean model signal-to-noise ratio over the GDA domain 
(Fig. 3b) indicates three periods of interest in the twentieth and early 
twenty-first centuries. The signal increases throughout the first half 
of the twentieth century, becoming detectable at the likely level by 
ad 1950. However, models indicate that the signal should diminish 
between ad 1950 and ad 1975 and become undetectable even as the 
noise term becomes smaller with increasing record length. After ad 
1975, the signal once again increases.

We find that the GDA (Fig. 3b) and two datasets24,25,33 (see Methods) 
constructed from meteorological observations (Fig. 3b) show trends 
that are very similar to the multi-model mean. All three datasets  
indicate a detectable signal in the early twentieth century and a  
quick decrease mid-twentieth century. The two meteorological  
datasets indicate an increasing signal in recent decades (the drought 
atlases transition from tree-ring-derived reconstructions to their 
respective target datasets after 1975, we therefore exclude GDA data 
after that date; see Methods). Because we use pre-1850 drought atlas 
data to define the noise term, this detection analysis is largely inde-
pendent of GCMs, except for the use of the models to generate the 
fingerprint.

The usefulness of the global approach is shown in Fig. 2c. Assuming 
a present-day (that is, 2019) start to minimize the effects of other  
historical forcings, the model-predicted signal in the GDA and in all 
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Fig. 3 | Projections and time of emergence. a, Projection of growing 
season PDSI from the GDA onto the modelled fingerprint shown in 
Fig. 2a. Preindustrial (pre-1850) variability is shown in green. b, Time of 
emergence for model-predicted and observed signals in PDSI. Horizontal 
lines correspond to the thresholds of likely (S/N > 0.95; detectable at 
66% confidence), very likely (S/N > 1.64, 90% confidence) and virtually 
certain (S/N > 2.57, 99% confidence). Thin grey lines show the results 
for individual H85 simulations and the thick black line shows the multi-
model mean signal-to-noise ratio over the GDA domain. Thick lines show 

the signal-to-noise ratio for trends beginning in ad 1900 in the GDA 
tree ring reconstructions (green), DAI (light blue) and CRU (dark blue) 
PDSI datasets. c, Time of emergence for model-predicted and observed 
PSDI signals in the GDA and in each individual regions, assuming a start 
in ad 2019. The thin horizontal line corresponds to the virtually certain 
level (S/N > 2.57, 99% confidence). Shading represents the maximum 
and minimum signal-to-noise ratios in the individual model simulations. 
Thick solid lines show the multi-model average signal-to-noise ratio in 
each region.

2  M A Y  2 0 1 9  |  V O L  5 6 9  |  N A T U RE   |  6 1



ArticleRESEARCH

individual drought atlases monotonically increases under the green-
house-gas-dominated RCP8.5 scenario. The average model projects 
a detectable signal in the GDA by 2036—earlier than in any of the 
individual drought atlas regions. Signal emergence is slowest in the 
MXDA (emerging by 2067) and ANZDA (emerging by 2073), owing 
to the small land areas and large internal variability of these regions. 
The NADA signal is also slow to emerge (by 2062) owing to large 
internal variability. Models project that the signal-to-noise ratios of the 
OWDA and MADA will cross the detectability threshold earlier: for 
OWDA (by 2049), mainly because the signal is strong, and for MADA 
(by 2047), because the noise term is comparatively small (Extended 
Data Fig. 1).

Detection and attribution
However, the signal in most drought atlases does not monotoni-
cally increase over the twentieth century. The principal components  
shown in Fig.  2d clearly indicate an increase from 1900 to  

1949, a decrease from 1950 to 1975, and a subsequent increase; behav-
iour that is clearly apparent in the observationally based datasets 
(Fig. 3b).

To further compare models and observations, we perform a detection 
and attribution analysis over these three distinct time periods.

1900–1949
The projection of the GDA and the two meteorological datasets onto 
the PDSI fingerprint from Fig. 1a for 1900–1949 is shown in Fig. 4a. All 
three datasets increasingly resemble the fingerprint over this period, 
as illustrated by the positive trends in these fingerprint projections. 
The statistical significance of these signals can be assessed against 
total natural variability derived from the pre-1850 GDA. The trend for 
1900–1949 is larger than all but one of the 50-year trends in the pre-
1850 GDA projections: the signal (in all three datasets) is detectable at 
the very likely threshold. It is also compatible with 50-year trends in 
forced model simulations over the same period, thus indicating that a 
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Fig. 4 | Detection and attribution results. a, Projection of 1900–1949 
PDSI from the drought atlases and two instrumental datasets onto the 
fingerprint. b, Signal-to-noise ratios (S/N) in the three datasets (vertical 
lines), pre-1850 drought atlas projections (pink histogram), preindustrial 
control simulations (purple histogram) and H85 simulations (black 
histogram). All signals and distributions are normalized by dividing by the 
standard deviation of the drought atlas noise histogram. Solid lines show 
the best-fit Gaussian distribution for visual clarity. c, d, Analyses as in a, b,  

but for 1950–1975 trends. e, f, Analyses as in a, b, but for 1981–2017 
trends. e, The projection of two surface and root-zone soil moisture 
datasets onto their respective fingerprints is also shown. g, Signal-to-
noise ratios in the two surface soil moisture datasets (vertical lines), 
preindustrial control simulations (PiControl, purple histogram) and 
H85 simulations (black histogram). All signals and distributions are 
normalized by dividing by the standard deviation of the drought atlas 
noise histogram. h, Analysis as in g, but for root-zone soil moisture.
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detectable signature of external forcing is present in the first half of the 
twentieth century.

1950–1975
In contrast to the signal detected from 1900 to 1949, all three datasets 
are increasingly dissimilar to the fingerprint of 1950–1975 (Fig. 4c). 
This negative trend in the projection means that mid-century hydro-
climate changes do not resemble the modelled response to the forcings 
(predominantly due to anthropogenic greenhouse gases) that deter-
mine the fingerprint (Fig. 2a). However, the 1950–1975 behaviour is 
also unusual in the context of preindustrial variability (Fig. 4d), while 
being compatible with the distribution of 26-year trends in forced mod-
els simulations over the same period. This suggests a possible role for 
external forcing, despite the increasing divergence from the expected 
fingerprint of greenhouse gas forcing.

Although greenhouse gases were important during the twentieth 
century, they were not the only forcing agents that shaped the climate. 
The mid-century period coincides with increasing anthropogenic aer-
osol forcing in the global mean34,35, which has been shown to affect 
aspects of regional precipitation36–38. A formal attribution of these 
trends to anthropogenic aerosol emissions would require knowledge 
of the PDSI response to aerosol forcing. However, an aerosol fingerprint 
on global and regional hydroclimate remains unclear for several rea-
sons: inter-model disagreement in the magnitude and sign of the forced 
response39, uncertainties in aerosol forcing40 and model representation 
(or lack thereof) of the indirect and direct aerosol effects and tropo-
spheric cloud responses39,41 (Methods and Extended Data Fig. 3). Here, 
we approximate an aerosol fingerprint by averaging PDSI from the H85 
simulations over the restricted period 1950–1975 before calculating the 
leading EOF (Fig. 5a). We note that although anthropogenic aerosol 
forcing was increasing over this period, other forcings—particularly 
greenhouse gas emissions and the eruption of Mount Agung in 1963—
also have a large role. Although the associated principal component 
displays a distinct upward trend (Fig. 5b), this EOF explains less than 
12% of the variance in the multi-model mean over this period. Because 
internal variability is decreased by the averaging process, this low value 
reflects inter-model disagreement in the magnitude and sign of the 
forced response (Extended Data Fig. 3).

Nevertheless, this approximation of an aerosol fingerprint appears 
increasingly present in the GDA and meteorological datasets, although 
the signal is weak (Fig. 5c). Projecting pre-1850 tree ring reconstruc-
tions onto this approximate aerosol fingerprint and calculating the 
distribution of 26-year trends (Fig. 4b–f) yields a measure of noise, 
and suggests that the weak signal of the influence of aerosols is not 
detectable above natural variability (Fig. 5d). However, despite sub-
stantial ambiguity in the model-predicted response to aerosols, the 
H85 distribution of trends over this period is shifted to the right of the 
noise distribution, indicating that this fingerprint is increasingly pres-
ent in the average H85 simulation. This is in contrast to the detection 
and attribution analysis shown in Fig. 4d, which suggests that the H85 
simulations over this period are increasingly dissimilar to the green-
house-gas-dominated fingerprint (Fig. 2a). Moreover, we note that 
the model-predicted signal is stronger in those models that include 
some representation of the indirect effects of aerosols, and that these  
models have generally been found39,42 to be more reliable over this 
period (Extended Data Fig. 3).

Our results suggest a possible role for at least some non-greenhouse 
gas forcings during the mid-twentieth century, although further work 
is needed to rigorously identify the expected responses to individual 
forcings (particularly greenhouse gases, aerosols and volcanic erup-
tions) over this time period in order to robustly attribute the observed 
and modelled 1950–1975 trends.

1981 to present
Finally, at the end of the twentieth century, models indicate that the 
signal once again becomes positive. We choose to perform a formal 
detection and attribution analysis over the period 1981–2017 in order 
to incorporate two soil moisture datasets (MERRA-243, a reanalysis in 
which soil moisture is initialized with gauge-based precipitation obser-
vations, and GLEAM16, a reanalysis constrained by satellite estimates 
of surface soil moisture, both of which begin in 1981). The projections 
of surface and root-zone soil moisture observations onto their respec-
tive fingerprints from Fig. 1b, c are consistent with the projections of 
the meteorological PDSI datasets onto the PDSI fingerprint (Fig. 4e). 
Positive trends in all of the projections indicate increasing similarity 
to the fingerprint and thus consistency with signals in the forced H85 
models over the same period; however, they are not detectable at the 
likely level over background noise (Fig. 4f–h). Moreover, in the two 
soil moisture datasets the signal occurs in the left-hand tail of the 
distribution of forced model signals. This may be a signature of the 
recent ‘hiatus’44 in global surface warming, a period characterized by 
cool temperatures in the equatorial Pacific45 and intensification of the 
trade winds46. Although the causes47, relevance48 and even statistical 
existence49 of the hiatus are debatable, our finding is consistent with 
literature that has identified differences in the multi-model mean and 
observations across multiple variables46,50. Alternatively, the relatively 
weak signal may reveal a more serious disagreement between the model 
and observations. However, if the end of hiatus conditions brings  
models and observations into closer agreement, then we should expect 
a detectable signal by the middle of the twenty-first century (by 2054, 
assuming a start in 1981), when even the most conservative model 
projects emergence at a virtually certain level.

Noise from model simulations
Suppose we had not used drought atlases to estimate noise, but instead 
followed the traditional route of using preindustrial control simula-
tions. Traditional noise estimates from these simulations estimate 
larger natural variability than the GDA, despite excluding—by design—
the responses to natural forcings that could increase that variability 
(Fig. 4b–f). The discrepancy may also arise from the brevity of the 
tree ring record compared to concatenated model noise: the 450 years 
in the GDA may fail to capture the full range of variability. However, 
sensitivity tests using different periods and regions do not indicate any 
systematic bias in noise estimates (Methods, Extended Data Fig. 4 and 
Supplementary Table 1). These results indicate that noise estimates 
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analysis, as in Fig. 3d but with projections onto the approximated aerosol 
fingerprint shown in a.

2  M A Y  2 0 1 9  |  V O L  5 6 9  |  N A T U RE   |  6 3



ArticleRESEARCH

from model-derived preindustrial control simulations provide more 
conservative detection estimates. Despite this fact, the signal for 1900–
1949, for instance, remains detectable at the virtually certain level.

Regional detection and attribution
Repeating the analysis in individual drought atlas regions confirms 
the usefulness of the global approach for signal detection. The sig-
nal-to-noise ratios in each individual drought atlas are shown in 
Fig. 6. All signals and noise are defined by projection onto the green-
house-gas-dominated fingerprints shown in Fig. 1a–e (regional) and 
2a (global).

We find no detectable signal in any individual region, because of the 
large internal variability and reduced signal strength. However, certain 
trends are notable: with the exception of MXDA and MADA, for which 
the trend is ambiguous, trends in the early half of the twentieth century 
are positive everywhere. Negative signals are present in the OWDA, 
NADA and MXDA in both models and observations at mid-twentieth 
century. In the recent period, trends are positive almost everywhere and 
are compatible with forced distributions in all regions.

Our results suggest that anthropogenic influences on global hydrocli-
mate were present throughout the twentieth century, albeit in different 
forms. The influence of greenhouse gases is clearly visible in the early 
half of the century, but their effect was likely counteracted by increased 
anthropogenic aerosol emissions by mid-twentieth century. Future 
research is needed to more precisely understand the impacts of differ-
ent forcing agents—and particularly aerosols and greenhouse gases—on 
global and regional hydroclimate and to extend the palaeoclimate recon-
structions into different regions. However, models project and observa-
tions show a re-emerging greenhouse gas signal towards the end of the 
twentieth century, and this signal is likely to grow stronger in the next 
several decades. The human consequences of this, particularly drying 
over large parts of North America and Eurasia, are likely to be severe.
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Methods
PDSI. The PDSI51 is a soil-moisture-based drought indicator, representing varia-
bility in soil moisture using a two-layer bucket model52,53 that integrates changes in 
moisture supply (precipitation) and demand (evapotranspiration) over timescales 
of about 12 months. PDSI is a standardized index, in which values of zero represent 
baseline average conditions and positive or negative values indicating wet or dry 
departures from the baseline climatology. In this study, we track reconstructed, 
observed and simulated PDSIs, because PDSI is the target variable for existing 
drought atlases.

PDSI is a drought index that is widely used for observational analyses54, as a 
target for palaeoclimate reconstructions1 and in model simulations of the past 
and future22,23. Previous analyses have demonstrated that results from PDSI 
compare favourably with surface soil moisture simulated by more sophisticated 
land-surface and hydrologic models that are based on physical measurements23,55. 
Differences may arise between PDSI and total soil moisture in the future, when 
the influence of atmospheric CO2 on plant physiology is taken into account12 and 
this metric has received important (and valid) criticism regarding its utility for 
both drought monitoring and in climate change projections of drought risk11,12,14. 
General criticisms are twofold: (1) the offline nature of the calculation of PDSI 
and (2) the simplification or omission of important processes, such as snow or the 
physiological impact of CO2 on plant water use efficiency and evapotranspiration. 
Because of its offline nature (in which climate data drives the model, but feedback 
effects from the land to the atmosphere are disabled), there are concerns that the 
PDSI may overestimate the impact of rising temperatures on drought by effec-
tively counting the temperature impact twice56,57. For example, during droughts  
the surface dries out and plants close their stomata, reducing latent heat fluxes. 
This causes increased sensible heating, which increases air temperatures. However, 
this warming is a clear response to the drought, and if these temperatures are  
used to force an offline land-surface model, they will have a disproportionate 
impact on the drought. This is a critique that may be applied to any offline 
land-surface model, and the degree to which this issue exacerbates temperature 
impacts on regional droughts is still debated. Similarly, the physiological response 
of plants to rising atmospheric CO2 may increase the plant water use efficiency 
and preserve soil moisture in the root zone. Neglecting this CO2–physiology  
feedback in the offline calculation of potential evapotranspiration (by keeping  
the stomatal resistance constant in the computation of the potential evapotran-
spiration) may overpredict future drying trends from warming in PDSI12,14.  
However, the net impact of this physiological effect depends on how aridity is 
defined12.

Despite these critiques, there is generally broad agreement between some esti-
mates of surface soil moisture variability and trends calculated from PDSI and more 
sophisticated models of land surface hydrology. For example, when forced with 
the same meteorological input data, summer soil moisture over the Sierra Nevada 
Mountains estimated from PDSI and the state-of-the-art variable infiltration capac-
ity model55 correlate with r = 0.93. Similarly, PDSI and soil moisture taken from 
coupled climate models also show good agreement regarding the intensity and 
spatial extent of drying and wetting trends in model projections23,58,59 of green-
house gas forcing in the twenty-first century. It was previously shown that aridity 
trends in the twenty-first century with potential evapotranspiration (PET)-derived 
PDSI were in good agreement with near-surface soil moisture trends, although 
disparities were identified when compared with deeper soil moisture trends12. 
The divergence between near-surface and deep soil moisture within the coupled 
models is nevertheless as large as or larger than the difference between PDSI and 
model soil moisture23.

We show that the surface area over which drying is predicted by the mod-
els tends to be larger with PDSI and the surface soil moisture (70% and 76% of 
the GDA land surface, respectively) than with the root zone soil moisture (59%; 
Fig. 2a–c). This result is consistent with recent model results12 that show that the 
area of land that is permanently arid in the future appears to be much larger when 
aridity indices that are dominated by the behaviour of meteorological variables 
(such as PDSI and the soil moisture in surface layers that interact closely with the 
atmosphere) are used than with plant-based aridity indices (such as the root zone 
soil moisture). This is mainly owing to a modelled plant physiology feedback in 
which plant evapotranspiration is reduced, preserving soil moisture in the root 
zone. We also note that the PDSI fingerprints differs from the soil moisture finger-
prints in Alaska and northeast Asia, probably because PSDI does not include data 
on permafrost and soil freezing, and treats all precipitation as rain. Nevertheless, 
the PDSI and surface soil moisture fingerprints have the same sign in 76% of the 
GDA land area, while PDSI and root zone soil moisture fingerprints have the same 
sign in over 65% of the area. Surface and root zone fingerprints have the same sign 
in over 81% of the GDA land area.
Reconstructions. The three drought atlases (NADA, MXDA and OWDA) that 
were used in this study are available from the Tree-Ring Drought Atlas Portal at 
http://drought.memphis.edu.

The most recently updated versions of ANZDA (https://www.dropbox.com/s/
nrizk1a1a289awh/anzdaV2.nc) and MADA (https://www.dropbox.com/s/
n2lo99h9qn17prg/madaV2.nc) that are used in this analysis are available from 
the indicated websites.

To construct GDA, all atlases were downloaded and regridded to a common 2.5° 
latitude–longitude grid using the CDAT ‘regrid2’ tool, which uses an interpolation 
that preserves the area-weighted mean. In areas in which there is overlap, data 
from the MXDA supersedes that from the NADA, because MXDA includes more 
proxies over the domain (and has been shown to be more skilful over the recon-
structed domain) than what is available in the NADA4. The GDA begins in the year 
ad 1400, when data from MXDA and ANZDA become available. A uniform mask 
is imposed at every time step: if a grid cell is missing data for any year between 1400 
and 2005, it is masked for all times in the record. Following this masking process, 
we have comprehensive data for 54% of the non-Antarctic global land area.

The drought atlases consist of tree ring reconstructions until the 1970s, after 
which they switch over the target instrumental dataset, which is different for 
each drought atlas. Spatially averaged time series (or principal components) may 
exhibit discontinuities at the time at which a drought atlas switches from tree 
rings to instrumental data. This is because the instrumental data generally have 
a much higher spatial variance than the tree rings, so variability and trends in the 
instrumental period are muted relative to the tree ring period. For this reason, 
tree-ring-based time series used in the main text were only used up until the 
end of 1975, when the ANZDA drought atlas (the first to do so) switched to 
instrumental data.
Meteorological datasets. We used two datasets that were derived from recent 
observations. In the first dataset25, PDSI was calculated from instrumental temper-
ature and precipitation that was taken from version 3.21 of the University of East 
Anglia CRU climate grids and PET was calculated using the Penman–Monteith 
formula. These are gridded monthly mean values, interpolated over land from 
individual station observations to a spatially uniform half-degree grid. The data 
that we used are available at https://crudata.uea.ac.uk/cru/data/drought/.

We regridded this dataset to the same common grid as the models and cal-
culated the average over the summer season. The second observational dataset 
that we used was described previously60, consisting of monthly PDSI over global 
land areas on a 2.5° grid that was computed using observed monthly surface air 
temperature and precipitation data from the National Center for Environmental 
Prediction (NCEP) reanalysis. We calculated means over the summer season 
from these monthly values. Two PDSI datasets were generated previously using 
the Thornthwaite and Penman–Monteith formulations of potential evapotran-
spiration. Here we only used the Penman–Monteith version, which is available at 
https://rda.ucar.edu/datasets/ds299.0/.
PDSI calculations from simulations. The PDSI is calculated as described pre-
viously23 for two sets of simulations archived by the CMIP515: preindustrial 
control and historical simulations extended post-2005 with RCP8.5 simulations 
(H85). For H85 simulations, we calculate model PDSIs for 1850–2099 using the 
Penman–Monteith formulation of potential evapotranspiration. We use 1921–2000 
as the baseline period for PDSI in the H85 simulations. For PDSI calculations in 
each individual preindustrial control simulation, we use the full time interval of 
simulation as the baseline period. The PDSI index is computed monthly, but all 
analyses are based on PDSI averaged for the summer season: June–July–August 
for the Northern Hemisphere and December–January–February for the Southern 
Hemisphere. The mask determined from the GDA is applied to all model results 
throughout all analyses.
Simulated soil moisture. In accordance with a previous publication23, we also 
calculate standardized soil moisture metrics from the GCMs by integrating total 
soil moisture for June–July–August (December–January–February in the Southern 
Hemisphere) from the surface to 30 cm (surface) and from the surface to 2–3 m 
(root zone). We use the CMIP5 ‘mrlsl’ variable, defined as the mass of water in each 
soil layer (all phases). These are standardized at each grid cell such that the soil 
moisture metrics have the same mean and temporal s.d. as the model PDSI during 
the 1921–2000 interval at each grid cell. This enables direct comparisons between 
variability and trends in shallow and deep soil moisture while independently pre-
serving any low-frequency variability or trends in the model soil moisture that 
is distinct from the PDSI calculation. This standardization does not impose any 
artificial constraints that would force the three metrics to agree in terms of varia-
bility or future trends, allowing soil moisture at the surface and in the root zone to 
be used as indicators of drought in a manner that is largely independent of PDSI. 
Supplementary Table 2 contains information about the number of soil layers and 
approximate depths used for the calculation of soil moisture indices at the surface 
and in the root zone.
Observation-based soil moisture datasets. For recent decades, we also evaluated 
two observation-based datasets that provided estimates of both surface and root-
zone soil moisture at the global scale. The first is MERRA-2, a global reanalysis 
product available from 1981 to 201743 that assimilates a variety of surface and 
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satellite datasets. In MERRA-2, all surface hydrologic variables (including soil 
moisture) are prognostically calculated using observation-based precipitation and 
other variables provided by the reanalysis (for example, temperature)17. Broadly, 
soil moisture estimates from MERRA-2 generally agree well with in situ soil mois-
ture measurements17. The second dataset that we used is GLEAM version 3.2a, a 
land-surface reanalysis that provides estimates of terrestrial evapotranspiration 
and soil moisture (surface and root zone) using a land-surface model forced by 
atmospheric input data and constrained by satellite estimates of vegetation stress, 
snow cover and soil moisture16. In contrast to other reanalyses, including MERRA-
2, GLEAM directly assimilates satellite-based soil moisture estimates into the top 
layer of the soil model, providing additional observational constraints on both 
evapotranspiration, and surface and root-zone soil moisture. As with MERRA-
2, GLEAM has been extensively evaluated against in situ measurements of soil 
moisture and evapotranspiration16. For comparisons with the climate model sim-
ulations, surface and root-zone soil moisture from MERRA-2 and GLEAM were 
standardized to the same mean and variance as the GCM surface and root-zone 
soil moisture.
Detection and attribution toolkit. Fingerprint. There are three components in a 
detection and attribution study. The fingerprint F(θ, φ) of climate change is the 
spatial pattern, generally a function of latitude θ and longitude φ, that character-
izes the climate system response to external forcing18–21. In much of the literature 
(for example, refs. 19,61 and the references therein), the fingerprint is defined as 
the leading EOF of the spatiotemporal covariance matrix that results from first 
averaging over members of each CMIP5 historical model ensemble and then over 
models. This ensures that the average is not dominated by models that submit-
ted many historical ensemble members to CMIP5. Because internal variability is 
uncorrelated across models and ensemble members, the leading EOF should reflect 
a common response to the particular collection of forcing data that are present in 
the historical simulations. These generally include natural forcing data (volcanic 
eruptions and solar variations) as well as anthropogenic ozone depletion, land-use 
change, aerosols and greenhouse gases. The fingerprint F(θ, φ) summarizes our 
best understanding of how the variable in question responds to external forcing. We 
note the similarity between the leading EOF (Fig. 2a) and the linear trend pattern 
(Extended Data Fig. 2), an agreement characterized by a pattern correlation that 
exceeds 99%. Because RCP8.5 is dominated by greenhouse gas emissions, they are 
the primary contributor to the fingerprints shown in Fig. 1. Repeating the analysis 
with the fingerprint generated from years 2006–2099 of RCP8.5 only (data not 
shown) does not change the conclusions.

Because CMIP5 historical simulations end in 2005, we extend them to 2099 by 
splicing with the corresponding RCP8.5 simulation (H85). For each H85 simula-
tion, year t and grid cell (θ, φ), we calculate the summer season (June–July–August 
in the Northern Hemisphere, December–January–February in the southern) aver-
age PDSI as described previously23. We then average over all ensemble members 
of a particular model, and then over all models, to obtain multi-model mean PDSI 
time series. The averaging process decreases internal variability—which is expected 
to be uncorrelated across different models and realizations—and reveals the forced 
response. The fingerprint is defined as the leading empirical orthogonal function 
of the 1860–2099 multi-model mean PDSI, weighted by the grid-cell area. We also 
calculate fingerprints for surface (30 cm) and root zone (2 m) soil moisture over 
1900–2099 using the same method.

Approximate aerosol fingerprints are also calculated as described in the main 
text. Aerosol emissions62, forcing40, fast cloud adjustments41 and responses39 are 
highly uncertain across models. This is shown in Extended Data Fig. 3, where the 
approximated aerosol fingerprint has been calculated from two groups of models 
over the period 1950–1975: those with a representation of the indirect effect of 
sulfate aerosols and those without (see table 1 of a previously published study39 for 
a list of such models). The principal component that was associated with the EOF 
calculated from models that included the indirect effects showed upward trends, 
whereas the principal component that was associated with models that excluded 
these effects showed no trend. Moreover, the spatial fingerprints associated with 
these two groups of models differ. The fingerprint calculated from models that 
include indirect effects shows moistening over the United States and much of 
Europe and the Levant, and drying in Australia as shown for the aerosol finger-
print in Fig. 5. The fingerprint calculated from models without indirect effects 
shows drying over much of the southwestern United States and no large changes in 
Australia. We urge caution with the interpretation of these fingerprints, however, as 
they explain less than 11% of the variance in their respective multi-model means.
Signal. Given a dataset of observed, reconstructed or simulated values θ φO t( , , ), 
the project ion P( t)  onto the f ingerprint  F(θ ,   φ )  is  g iven by 

θ φ θ φ θ φ= ∑θ φ OP t t F w( ) ( , , ) ( , ) ( , ),  where w(θ,φ) is the grid cell area. Physically, 
this measures the spatial covariance between the searched-for fingerprint and the 
observational or model data as a function of time. If the fingerprint is increasingly 
present in the data, then P(t) should show an upward trend. As previously 
described18, we define the signal S(L) as the L-length trend in P(t), obtained by 

least-squares regression. This process reduces multidimensional observations, 
which vary across space and time, to a single scalar signal.
Noise. In order to assess the significance of a signal, we need an understanding 
of how internal climate variability might project onto the fingerprint. We do this 
in two ways: first, we project drought atlas-derived PDSI values onto the model- 
derived fingerprint, as in Fig. 2a, and take pre-1850 values to represent preindustrial  
noise that results from internal or naturally forced variability. Second, we calculate 
PDSI, surface soil moisture and root-zone soil moisture for the CMIP5 preindus-
trial control simulations. By concatenating each preindustrial control simulation 
for each variable and projecting the result onto the relevant fingerprint (Fig. 1a–c), 
we obtain a long (4,673 years) projection time series. For a signal of length L years, 
we calculate all possible L-length trends in this projection time series. The standard 
deviation of this distribution, denoted N(L) provides a measure of noise in the 
trends: the likelihood of observing a given signal purely due to natural variabil-
ity. Unless otherwise specified, PDSI noise is defined using the tree-ring-based 
method. Because there are no direct pre-1850 reconstructions of soil moisture, 
noise for surface and root-zone soil moisture is always defined using model pre-
industrial control simulations.

We find no systematic differences in 30- or 50-year noise terms estimated from 
years that were early (1400–1600) and late (1650–1850) in the preindustrial record 
(Extended Data Fig. 4). Moreover, Supplementary Table 1 indicates that our results 
are not highly sensitive to calculating noise dating from ad 1100, rather than ad 
1400.

We have no recent observations of unforced variability to assess variability 
in soil moisture, and therefore rely on the credibility of GCMs to simulate this. 
We note that there is substantial uncertainty in observed soil moisture, and as 
pointed out previously54, uncertainties in global precipitation measurements are 
large sources of this uncertainty.

Signal-to-noise ratio. We then compute the dimensionless signal-to-noise ratio 
(S(L)/N(L)) for a predetermined period of L years. We use the two-tailed z-test 
throughout to provide a conservative estimate of significance. If the dimensionless 
signal-to-noise ratio exceeds 0.95, 1.64 or 2.57, the L-length signal is consid-
ered detectable at 66%, 90% or 99% confidence, respectively (defined by IPCC 
guidelines as likely, very likely or virtually certain), relative to our best current 
multi-model estimates of natural internal variability10. Similarly, we compute 
S(L)/H(L) where H is the projections of PDSI, surface soil moisture and root-
zone soil moisture from the H85 climate simulations onto the fingerprint F(θ, φ). 
If the signal-to-noise ratio lies within the 5–95% confidence interval obtained  
from CMIP5 H85 simulations, the signal is considered compatible with the com-
bination of external forcing data present in those simulations. If an observed 
signal is both detectable and compatible with the CMIP5 forced distribution,  
it is considered attributable to that particular combination of external forcing 
analyses. However, an observed signal can be compatible with external forcing 
but too weak to emerge from the background of internal variability; or it can be 
detectable but not compatible with external forcing (if it is incompatible with both 
unforced and forced model distributions). The latter case is cause for concern 
and results from some combination of the following: model failure to realistically 
capture the forced sign and amplitude of the response, uncertainties in the forcing 
data themselves, model underestimation of internal variability or observational 
uncertainties.
Sensitivity tests. In the main text, we report a detectable trend in 1900–1949 PDSI 
in the GDA. The GDA, however, is the combination of data from five different 
drought atlases. We therefore repeat the exercise for each individual drought atlas, 
calculating fingerprints, noise and the signal for each region. The resulting 1900–
1949 signal-to-noise ratios are shown in Supplementary Table 3. We also perform 
calculations for two other composite drought atlases: one in which NADA has been 
removed (because the target dataset for the NADA is different than for the other 
drought atlases, and because there were large droughts in the 1930s) and one in 
which we combine OWDA, NADA and MADA only, in order to obtain a noise 
time series that extends back to ad 1100. We note that the signal is significant at the 
likely level only in the OWDA, but combining the different drought atlases yields 
a larger signal-to-noise ratio that is robust to excluding the NADA and extending 
noise back to ad 1100.

Data availability
All model data used in this paper are available through the Earth System Grid (see 
https://esgf-node.llnl.gov/projects/esgf-llnl/) and freely available for download. All 
observational and reconstructed PDSI and soil moisture data are freely available 
for download from the indicated links. Data for NADA, MXDA, OWDA, http://
drought.memphis.edu; ANZDA, https://www.dropbox.com/s/nrizk1a1a289awh/
anzdaV2.nc; MADA, https://www.dropbox.com/s/n2lo99h9qn17prg/madaV2.
nc; CRU, https://crudata.uea.ac.uk/cru/data/drought/; DAI, https://rda.ucar.edu/
datasets/ds299.0/; MERRA-2, https://goldsmr4.gesdisc.eosdis.nasa.gov/data/
MERRA2_MONTHLY/; GLEAM, https://www.gleam.eu.
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http://drought.memphis.edu
http://drought.memphis.edu
https://www.dropbox.com/s/nrizk1a1a289awh/anzdaV2.nc
https://www.dropbox.com/s/nrizk1a1a289awh/anzdaV2.nc
https://www.dropbox.com/s/n2lo99h9qn17prg/madaV2.nc
https://www.dropbox.com/s/n2lo99h9qn17prg/madaV2.nc
https://crudata.uea.ac.uk/cru/data/drought/
https://rda.ucar.edu/datasets/ds299.0/
https://rda.ucar.edu/datasets/ds299.0/
https://goldsmr4.gesdisc.eosdis.nasa.gov/data/MERRA2_MONTHLY/
https://goldsmr4.gesdisc.eosdis.nasa.gov/data/MERRA2_MONTHLY/
https://www.gleam.eu


ArticleRESEARCH

Code availability
Analysis code written in Python is available at GitHub (https://github.com/kate-
marvel/drought-atlas).
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Extended Data Fig. 1 | Noise estimates. Distributions of overlapping (all possible) 50-year trends in the projection of preindustrial reconstructions 
(1400–1850) of the drought atlas onto the fingerprints shown in Fig. 1a–e. Best-fit Gaussian distributions are overlaid for visual clarity.
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Extended Data Fig. 2 | Trends in the GDA. Linear trends in the multi-
model mean CMIP5 historical simulations extended to 2100 with RCP8.5. 
Trends are calculated for each grid cell using ordinary least-squares 

regression. The pattern is extremely similar to the fingerprint shown in 
Fig. 2a, with the pattern correlation exceeding 99%.
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Extended Data Figure 3 | Models with and without aerosol indirect 
effects. a, b, The approximated aerosol fingerprint for models with (a) 
and without (b) aerosol indirect effects, defined as the leading EOF of 
the multi-model average historical simulations over the years 1950–1975. 

Models are grouped according to the previously reported classifications39. 
c, d, Associated principal components for the fingerprints shown in a  
and b.
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Extended Data Figure 4 | Noise time dependence. The standard 
deviation of all 50-year trends in projections of the drought atlas for  
1400–1850 onto the fingerprints in Fig. 1a–e were calculated from years 

early (x axis) and late (y axis) in the preindustrial record. There is no 
evidence for a systematic difference in noise estimates across drought  
atlas regions.
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